Enabling of Quantum ESPRESSO to Petascale Scientific Challenges

نویسندگان

  • Ivan Girotto
  • Nicola Varini
  • Filippo Spiga
  • Carlo Cavazzoni
  • Davide Ceresoli
  • Layla Martin-Samos
  • Tommaso Gorni
چکیده

In this paper we present development work carried out on Quantum ESPRESSO [1] software package within PRACE-1IP. We describe the different activities performed to enable the Quantum ESPRESSO user community to challenge frontiers of science running extreme computing simulation on European Tier-0 system of current and next generation. There main sections are described: 1) the improvement of parallelization efficiency on two DTF-based applications: Nuclear Magnetic Resonance (NMR) and EXact-eXchange (EXX) calculation; 2) introduction of innovative van der Waals interaction at the ab-initio level; 3) porting of PWscf code to hybrid system equipped with NVIDIA GPU technology. Application Code: Quantum ESPRESSO

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increasing the QUANTUM ESPRESSO Capabilities II: Towards the TDDFT Simulation of Metallic Nanoparticles

This work regards the enabling of the Time-Dependent Density Functional Theory kernel (TurboTDDFT) of Quantum-ESPRESSO package on petascale systems. TurboTDDFT is a fundamental tool to investigate nanostructured materials and nanoclusters, whose optical properties are determined by their electronic excited states. Enabling of TurboTDDFT on petascale system will open up the possibility to comput...

متن کامل

SCIENTIFIC HIGHLIGHT OF THE MONTH Petascale computing opens new vistas for quantum Monte Carlo

For many kinds of problem the accuracy of quantum Monte Carlo (QMC) is much better than that of density functional theory (DFT), and its scaling with number of atoms is much more favourable than that of high-level quantum chemistry. However, the widespread use of QMC has been hindered by the fact that it is considerably more expensive than DFT. We show here that QMC is very well placed to explo...

متن کامل

Advancements in Big Data Processing in the ATLAS and CMS Experiments

The ever-increasing volumes of scientific data present new challenges for distributed computing and Grid technologies. The emerging Big Data revolution drives exploration in scientific fields including nanotechnology, astrophysics, high-energy physics, biology and medicine. New initiatives are transforming data-driven scientific fields enabling massive data analysis in new ways. In petascale da...

متن کامل

Petascale computing opens new vistas for quantum Monte Carlo

For many kinds of problem the accuracy of quantum Monte Carlo (QMC) is much better than that of density functional theory (DFT), and its scaling with number of atoms is much more favourable than that of high-level quantum chemistry. However, the widespread use of QMC has been hindered by the fact that it is considerably more expensive than DFT. We show here that QMC is very well placed to explo...

متن کامل

Enabling High Performance Computational Science through Combinatorial Algorithms

The Combinatorial Scientific Computing and Petascale Simulations (CSCAPES) Institute is developing algorithms and software for combinatorial problems that play an enabling role in scientific and engineering computations. Discrete algorithms will be increasingly critical for achieving high performance for irregular problems on petascale architectures. This paper describes recent contributions by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012